

PMP Exam Formulas Summary

Earned Value Management			
Name	Abbr.	Formula	Note
Budget At Completion	BAC	BAC = Total budget	What the project budget is
Earned Value	EV	EV= Actual % Complete * BAC	The value earned for the work actually completed to date. What the project is worth
Actual Cost	AC	AC = Cost spent	where cost spent = cost incurred. What the project has spent so far
Cost Variance	CV	CV = EV - AC	Positive = Under budget Negative = Over budget
Percent Complete	РС	PC = EV / BAC *100%	
Cost Performance Index	СРІ	CPI = EV/AC	Shows overall cost efficiency on the project. CPI >1: under budget CPI<1 : over budget
Schedule Variance	SV	SV = EV - PV	Positive = ahead schedule Negative = behind schedule
Schedule Performance Index	SPI	SPI = EV/PV	Shows overall schedule adherence. SPI >1: ahead schedule SPI< than 1 : behind schedule
Project Future CPI	РР	PP = Net investment / Average annual cash flow	Payback Period = Add up the projected cash inflow minus expenses until you reach the initial investment. Shorter is better
Variance At Completion	VAC	VAC = BAC - EAC	Projection of being over or under budget based on current performance. Positive: under budget Negative : over budget
To Complete Performance Index - Utilizing BAC	ТСРІ	TCPI =(BAC – EV)(BAC-AC)	Predicts likelihood of reaching BAC TCPI >1, harder to complete & meet BAC TCPI<1, Easier to complete and meet BAC
- Utilizing EAC	ТСРІ	TCPI =(BAC – EV)(EAC-AC)	Predicts likelihood of reaching EAC. TCPI >1, harder to complete & meet EAC TCPI<1, Easier to complete and meet EAC

Estimate at Completion - Standard formula	EAC	EAC = BAC / CPI	Forecasts final project costs based on current performance. The CPI stays the same until the end of the project
- Future work at planned costs formula	EAC	EAC = AC+ BAC-EV	Forecasts final project costs based on current performance
- Initial costs estimates flawed	EAC	EAC= AC + Bottom-up ETC	Used when the initial plan no longer valid. Forecasts final project costs based on current performance
- CPI and SPI affect remainder of project	EAC	(EAC)=AC+{(BAC-EV)/(CPI*SPI)}	Used when both CPI & SPI influence the remaining work
Estimate To Complete	ETC	ETC = EAC - AC	Predict how much more the remainder of the project will costs

Project Selection				
Name	Abbr.	Formula	Note	
Present Value	PV	PV = FV / (1+r)^n	What the project should be worth. Bigger result is better	
Discounted Cash Flow	DCF	Cash flow*DF		
Future Value	F	FV = PV * (1+r)^n	The value at specified date in the future that is equivalent in value to a specified sum today	
Discount Rate	r			
Discount Factor	DF			
Number of Years	n			
Net Present Value	NPV	Sum of PV of the individual cash flows	Used in Capital budgeting to analyze the profitability of a project or investment Bigger NPV is better, more precise than payback period	
Return of Investment	ROI	ROI = Net Income / total investment	ROI = Select biggest number.	
Benefit Cost Ratio	BCR	BCR = Benefit / Cost	Bigger is better. Represent return for every \$1	
Cost Benefit Ratio	CBR	CBR = Cost / Benefit		
Internal Rate of Return	IRR	The interest rate at which the PV equals the initial invst	Bigger IRR is better, more precise than NPV	
Payback Period	РР	PP = Net investment / Average annual cash flow	Payback Period = Add up the projected cash inflow minus expenses until you reach the initial investment. Shorter is better	
Opportunity Cost	OC	Opportunity Cost = The value of the project not chosen.	Smaller is better	
Expected Monetary Value	EMV	EMV = Probability * Impact		

PERT			
Name	Abbr.	Formula	
PERT 3-point	PERT 3	PERT3=(Pessimistic+(4*Most Likely)+Optimistic)/6	
PERT α	PERT α	PERT α = (Pessimistic-Optimistic) / 6	
PERT Activity Variance	PAV	PAV = ((Pessimistic - Optimistic) / 6)^2	
PERT Variance all		(PVA)= sum((Pessimistic - Optimistic) / 6)^2	
activities			

Classes of Estimates			
Туре	Note		
Order of Magnitude estimate = -25% to +75%	The estimate cost at early stage, scope not defined yet		
Preliminary estimate = -15% to + 50%	Rough estimate made at the beginning of the project		
Budget estimate = -10% to +25%	Made during the planning phase		
Definitive estimate = -5% to +10%	The most accurate, takes time to create		
Final estimate = 0%	Always zero		

SIGMA		
1 sigma = 68.26%	1 standard deviation, frequently used in analyzing data	
2 sigma = 95.46%	2 standard deviations , frequently used in analyzing data	
3 sigma = 99.73%	3 standard deviations , frequently used in analyzing data	
6 sigma = 99.99%	6 standard deviations , frequently used in analyzing data	
Control Limits (CL)	3 sigma from mean, reflects the expected variation in the data	

Communications		
Communication Channels	CC = n * (n-1) / 2	
Communication Channels per member	(n-1)	
Increased Channels	n * (n-1) / 2 After - n * (n-1) / 2 Before	
Decreased Channels	n * (n-1) / 2 Before - n * (n-1) / 2 After	
C: number of communications channels		
	n: number of stakeholders	

Procurement				
Name	Abbr.	Formula	Note	
Point of total assumption	(PTA)	(PTA) = [(CP-TP)]/buyer's share ratio]+TC	Determined by (FPIF) fixed price plus incentive fees contract. The seller bears all the lose of a coast overrun	
Contract Savings	(CS)	(CS)=Target Cost – Actual Coast	The saving that is divided between the seller and the buyer based on agreed ratio for the coast saved by the seller against the original estimated coast	
Contract bounce	(СВ)	(CB)=Savings*percentage	The sum paid when the seller meets certain goals decided in the (CPIF) cost plus incentive contract	
Contact Coast	(CC)	Bonus + Fees		
Total Coast	(TC)	Actual coast+ Contact coast		
Source selection criteria	(SS)	(SS)=(weightage*Price)+(weightage + Quality)	Used to score seller proposals	
CP: Ceiling price TP: Target price TC: Target cost				

Depreciation				
Name	Abbr.	Formula	Note	
Depreciation Expense	(DE)	DE = Asset Cost / Useful Life	Calculated using Straight-line Depreciation	
Depreciation Rate	(DR)	(DR) = 100%Useful Life	Calculated using Straight-line Depreciation	
Depreciation Rate	(DR)	(DR) = 2*(100%Useful Life)	Calculated using Double Declining Balance Method	
Depreciation Rate	(DR)	(DR) = Useful Life + (Useful Life - 1) + (Useful Life - 2) + etc	Calculated using Sum-of-Years' Digits Method	
Book value	(BV)	(BV) = Book value at the beginning of the year – Depreciation Expenses	Calculated using Double Declining Balance Method	

Network Diagram				
Name	Abbr.	Formula	Note	
Float	(FLT)	(FLT) = LS –ES OR (FLT) = LF - EF	If FLT<0 , Behind schdule If FLT = 0, critical	
			If FLT >0 , Under schdule	
Free Float	(FF)	(FF) = ES -EF		
Activity duration	(AD)	(AD) = EF – ES +1 OR (AD)= LF – LS + 1		
Early Finish	(EF)	(EF) = (ES + Duration) – 1		
Early Start	(ES)	(ES) = EF + 1		
Late Finish	(LF)	(LF) = LS -1		
Late Start	(LS)	(LS) = (LF – Duration) +1		
Forward Pass		ES = EF of the predecessor node EF = ES + Dur		
Backward Pass		LF = LS of the Successor LS = LF – Dur		
Slack		= LF – EF = LS – ES	ES Dur EF Node	
			LS Float LF	

Important Values

Control Limits = 3 sigma from mean

Control Specifications = Defined by customer; less than the control limits

Float on the critical path = 0 days

Pareto Diagram = 80/20

Time a PM spends communicating = 90%

Crashing a project = Crash least expensive tasks on critical path.

JIT inventory = 0% (or very close to 0%.)

Lag: Waiting time between activities (positive time)

Lead: Activities are moved closer together or overlap (negative time).

Crashing: Adding resources to reduce the project duration. Crashing adds costs to the project.

Fast tracking: Allows project phases to overlap to reduce the project duration. Fast tracking adds risk to the project.

Free float: The amount of time an activity can be delayed without delaying the next activity's start date.

Total float: The amount of time an activity can be delayed without delaying the project's end date.

Refer to the PMBOK® Guide 6th Edition for more details. & Please do not hesitate to contact me anytime if you have any questions, comments, and feedbacks.

Success is yours,

Prepared by: Amr Miqdadi, PMP <u>info@pmlead.net</u> <u>https://www.pmlead.net</u>

PMI®, PMP®, CAPM® and PMBOK® Guide are trademarks of the Project Management Institute, Inc. PMI® has not endorsed and did not participate in the development of this product.