PMP Exam Formulas Summary

Earned Value Management			
Name	Abbr.	Formula	Note
Budget At Completion	BAC	BAC = Total budget	What the project budget is
Earned Value	EV	EV= Actual \% Complete * BAC	The value earned for the work actually completed to date. What the project is worth
Actual Cost	AC	AC = Cost spent	where cost spent = cost incurred. What the project has spent so far
Cost Variance	CV	$C V=E V-A C$	$\begin{aligned} & \hline \text { Positive = Under budget } \\ & \text { Negative = Over budget } \end{aligned}$
Percent Complete	PC	PC = EV / BAC * 100%	
Cost Performance Index	CPI	$\mathrm{CPI}=\mathrm{EV} / \mathrm{AC}$	Shows overall cost efficiency on the project. CPI >1: under budget CPI<1 : over budget
Schedule Variance	SV	SV = EV - PV	Positive = ahead schedule Negative = behind schedule
Schedule Performance Index	SPI	SPI = EV/PV	Shows overall schedule adherence. SPI >1: ahead schedule SPI< than 1 : behind schedule
Project Future CPI	PP	PP = Net investment / Average annual cash flow	Payback Period = Add up the projected cash inflow minus expenses until you reach the initial investment. Shorter is better
Variance At Completion	VAC	$V A C=B A C-E A C$	Projection of being over or under budget based on current performance. Positive: under budget Negative : over budget
To Complete Performance Index - Utilizing BAC	TCPI	TCPI =(BAC -EV$)(\mathrm{BAC}-\mathrm{AC})$	Predicts likelihood of reaching BAC TCPI >1, harder to complete \& meet BAC TCPI<1, Easier to complete and meet BAC
- Utilizing EAC	TCPI	TCPI $=(\mathrm{BAC}-\mathrm{EV})(\mathrm{EAC}-\mathrm{AC})$	Predicts likelihood of reaching EAC. TCPI >1, harder to complete \& meet EAC TCPI<1, Easier to complete and meet EAC

Estimate at Completion - Standard formula	EAC	EAC $=\mathrm{BAC} / \mathrm{CPI}$	Forecasts final project costs based on current performance. The CPI stays the same until the end of the project
- Future work at planned costs formula	EAC	EAC $=\mathrm{AC}+\mathrm{BAC}-\mathrm{EV}$	Forecasts final project costs based on current performance
-Initial costs estimates flawed	EAC	EAC $=\mathrm{AC}+$ Bottom-up ETC	Used when the initial plan no longer valid. Forecasts final project costs based on current performance
-CPI and SPI affect remainder of project	EAC	(EAC $)=\mathrm{AC}+\{(\mathrm{BAC}-\mathrm{EV}) /(\mathrm{CPI}$ SPI) $\}$	Used when both CPI \& SPI influence the remaining work
Estimate To Complete	ETC	ETC $=\mathrm{EAC}-\mathrm{AC}$	Predict how much more the remainder of the project will costs

Project Selection			
Name	Abbr.	Formula	Note
Present Value	PV	$\mathrm{PV}=\mathrm{FV} /(1+r)^{\wedge} \mathrm{n}$	What the project should be worth. Bigger result is better
Discounted Cash Flow	DCF	Cash flow*DF	
Future Value	F	$\mathrm{FV}=\mathrm{PV}$ * (1+r)^ n	The value at specified date in the future that is equivalent in value to a specified sum today
Discount Rate	r		
Discount Factor	DF		
Number of Years	n		
Net Present Value	NPV	Sum of PV of the individual cash flows	Used in Capital budgeting to analyze the profitability of a project or investment Bigger NPV is better, more precise than payback period
Return of Investment	ROI	ROI = Net Income / total investment	$\mathrm{ROI}=$ Select biggest number.
Benefit Cost Ratio	BCR	BCR = Benefit / Cost	Bigger is better. Represent return for every \$1
Cost Benefit Ratio	CBR	CBR = Cost / Benefit	
Internal Rate of Return	IRR	The interest rate at which the PV equals the initial invst	Bigger IRR is better, more precise than NPV
Payback Period	PP	PP = Net investment / Average annual cash flow	Payback Period = Add up the projected cash inflow minus expenses until you reach the initial investment. Shorter is better
Opportunity Cost	OC	Opportunity Cost = The value of the project not chosen.	Smaller is better
Expected Monetary Value	EMV	EMV = Probability * Impact	

Name		Abbr.

Classes of Estimates

Type

Note

Order of Magnitude estimate $\mathbf{= - 2 5 \%}$ to $\mathbf{+ 7 5 \%}$ (The estimate cost at early stage, scope not defined yet
Preliminary estimate $=-15 \%$ to $+50 \% \quad$ Rough estimate made at the beginning of the project
Budget estimate $\mathbf{=} \mathbf{- 1 0 \%}$ to $\mathbf{+ 2 5 \%} \quad$ Made during the planning phase
Definitive estimate $=\mathbf{- 5 \%}$ to $\mathbf{+ 1 0 \%} \quad$ The most accurate, takes time to create
Final estimate $=0 \% \quad$ Always zero

SIGMA	
$\mathbf{1}$ sigma $=\mathbf{6 8 . 2 6 \%}$	1 standard deviation, frequently used in analyzing data
$\mathbf{2}$ sigma $=95.46 \%$	2 standard deviations, frequently used in analyzing data
$\mathbf{3}$ sigma $=99.73 \%$	3 standard deviations, frequently used in analyzing data
$\mathbf{6}$ sigma $=99.99 \%$	6 standard deviations, frequently used in analyzing data
Control Limits (CL)	3 sigma from mean, reflects the expected variation in the data

Communications

Communication Channels

$\mathrm{CC}=\mathrm{n}^{*}(\mathrm{n}-1) / 2$
Communication Channels per member
($\mathrm{n}-1$)
Increased Channels
$n^{*}(\mathrm{n}-1) / 2$ After - n * $(\mathrm{n}-1) / 2$ Before
Decreased Channels
n * $(\mathrm{n}-1) / 2$ Before - n * $(\mathrm{n}-1) / 2$ After
C : number of communications channels
n : number of stakeholders

Procurement				
Name	Abbr.	Formula	Note	
Point of total assumption	(PTA)	(PTA) $=[($ CP-TP)]/buyer's share ratio + TC	Determined by (FPIF) fixed price plus incentive fees contract. The seller bears all the lose of a coast overrun	
Contract Savings	(CS)	(CS)=Target Cost - Actual Coast	The saving that is divided between the seller and the buyer based on agreed ratio for the coast saved by the seller against the original estimated coast	
Contract bounce	(CB)	(CB)=Savings*percentage	The sum paid when the seller meets certain goals decided in the (CPIF) cost plus incentive contract	
Contact Coast	(CC)	Bonus + Fees		
Total Coast	(TC)	Actual coast+ Contact coast		
Source selection criteria	(SS)	(SS)=(weightage*Price)+(weightage + Quality)	Used to score seller proposals	
CP: Ceiling price TP: Target price TC: Target cost				

Abbr.			Formula	
Name	DE $=$ Asset Cost / Useful Life	Calculated using Straight-line Depreciation		
Depreciation Expense	(DE)	Note		
Depreciation Rate	(DR)	(DR) $=100 \%$ Useful Life	Calculated using Straight-line Depreciation	
Depreciation Rate	(DR)	(DR) $=2 *(100 \%$ Useful Life)	Calculated using Double Declining Balance Method	
Depreciation Rate	(DR)	(DR) $=$ Useful Life + (Useful Life - 1) + (Useful Life - 2) + etc...	Calculated using Sum-of-Years' Digits Method	
Book value	(BV)	(BV) $=$ Book value at the beginning of the year - Depreciation Expenses	Calculated using Double Declining Balance Method	

Important Values

Control Limits $=3$ sigma from mean
Control Specifications = Defined by customer; less than the control limits
Float on the critical path $=0$ days
Pareto Diagram = 80/20
Time a PM spends communicating $=90 \%$
Crashing a project = Crash least expensive tasks on critical path.
JIT inventory $=0 \%$ (or very close to 0\%.)
Lag: Waiting time between activities (positive time)
Lead: Activities are moved closer together or overlap (negative time).
Crashing: Adding resources to reduce the project duration. Crashing adds costs to the project.
Fast tracking: Allows project phases to overlap to reduce the project duration. Fast tracking adds risk to the project.
Free float: The amount of time an activity can be delayed without delaying the next activity's start date.
Total float: The amount of time an activity can be delayed without delaying the project's end date.

Refer to the PMBOK® Guide $6 t_{n}$ Edition for more details.
\&
Please do not hesitate to contact me anytime if you have any questions, comments, and feedbacks.

Success is yours,
Prepared by: Amr Miqdadi, PMP
info@pmlead.net
https://www.pmlead.net

$P M I ®, P M P ®, C A P M ®$ and $P M B O K ®$ Guide are trademarks of the Project Management Institute, Inc. PMI® has not endorsed and did not participate in the development of this product.

